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Quantum Stochastic Differential Inclusions of
Hypermaximal Monotone Type
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In continuation of our study of the existence of solutions of quantum stochastic
differential inclusions, we first introduce and develop some aspects of the theory
of maximal [resp. hypermaximal] monotone multifunctions, including the
description of a number of properties of their resolvents and Yosida
approximations, in the present noncommutative setting. Then, it is proved that,
under a certain continuity assumption, a quantum stochastic differential inclusion
of hypermaximal monotone type has a unique adapted solution which is obtained
as the limit of the unique adapted solutions of a one-parameter family of
Lipschitzian quantum stochastic differential equations. As examples, we show
that a large class of quantum stochastic differential inclusions which satisfy the
assumptions and conclusion of our main result arises as perturbations of certain
quantum stochastic differential equations by some multivalued stochastic
processes.

1. INTRODUCTION

In Ekhaguere (1992), we introduced the notion of a quantum stochastic
differential inclusion within the framework of the Hudson and Parthasarathy
(1984) formulation of quantum stochastic calculus. Inclusions are particularly
relevant in, for example, quantum stochastic control theory, since control-
theoretic problems may often be formulated as inclusions. In Ekhaguere
(1992), the existence of solutions of a Lipschitzian quantum stochastic differ-
ential inclusion was established. Moreover, a relaxation theorem giving the
relationship between the solutions of such an inclusion and those of its
convexification was also proved. Relaxation theorems are important in con-
trol theory.
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This paper continues our study of the question of existence of solutions
of quantum stochastic differential inclusions. We introduce the important
class of inclusions of hypermaximal monotone type. The members of this
class are interesting in the discussion of the nonlinear evolution of the systems
described by them, since they generate nonlinear evolution operators: these
will be investigated elsewhere. We establish that, subject to a certain continuity
condition, every quantum stochastic differential inclusion of hypermaximat
monotone type has a unique adapted solution.

The following is an outline of the rest of the paper. In Section 2, some
of the notation employed in the subsequent discussion is clarified. This is
made as consistent as possible with the notation in Ekhaguere (1992). Section
3 introduces the notion of a regular multifunction as well as various notions
of monotonicity for such a map. Some aspects of the theory of maximal [resp.
hypermaximal ] monotone muitifunctions are developed there, by proving two
results concerning these classes of multifunctions. The results generalize
their well-known counterparts in the Banach space context to the present
noncommutative setting. We conclude the section by describing the class of
hypermaximal monotone multifunctions that are employed in the subsequent
discussion. In Section 4, we introduce the notions of the resolvent and Yosida
approximation of a hypermaximal monotone multifunction lying in the class
described in Section 3. These are single-valued maps. Theorem 4.1 gives a
number of results concerning the maps. The quantum stochastic differential
inclusion studied in this paper is introduced in Section 5 as Problem (5.1),.
The results of Section 4 enable us to associate to Problem (5.1), a one-
parameter family of quantum stochastic differential equations. These are
Lipschitzian equations, each of which possesses a unique adapted solution.
Our main result is obtained by showing that the one-parameter family of
solutions of the Lipschitzian quantum stochastic differential equations con-
verges to a unique adapted solution of Problem (5.1),. As examples, we show
that a large class of quantum stochastic differential inclusions which satisfy
the assumptions and conclusion of our main result arises as perturbations
of certain quantum stochastic differential equations by some multivalued
stochastic processes. The results of this paper generalize classical analogs in
the Banach space context and apply, in particular, to quantum stochastic
differential equations of hypermaximal monotone type.

2. PRELIMINARIES

This section outlines some of the notation of this paper, which will be
as consistent as possible with that in Ekhaguere (1992). Thus Y is a fixed
Hilbert space. To this space, we associate a number of other function spaces
as follows. For I C R, = [0, ), L{(]) is the linear space of square-integrable
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Y-valued functions on /, and Ly o(/) [resp. Lz oc(£)] is the linear space of
all measurable, locally bounded functions from 7 to Y [resp. to B(Y), the
Banach space of bounded linear maps on Y]. If f € L[3),(/) and T €
L3 10c(D), then mf € LY o(]) is given by (mf)(1) = w(2)f(1), for almost every
tel

When D is some complex pre-Hilbert space with H as its completion,
we write L, (D, H) for the linear space of all linear maps x from D into H
such that the domain of the operator adjoint x* of x contains D, and I'(H)
for the Fock space (Guichardet, 1972) over H. For f € H, define ®% = 1
and if n = 1, define ®"f as the n-fold tensor product of f with itself. Then,

e(f) = E—BO ()12 @ f

is in I'(H) and is the exponential vector associated with f. In I'(H), the set
of all exponential vectors generates a dense subspace. Other properties of
these vectors are described in Guichardet (1972) and Hudson and Parthasara-
thy (1984).

In the sequel, D is a pre-Hilbert space whose completion is 3R, and E,
E,, and E', ¢+ > 0, are the linear spaces generated by the exponential vectors
in T(LZ(R,)), TLZ(0, 1)), and T'(LZ([z, ®))), ¢ > 0, respectively. We denote
the inner product and norm of the Hilbert space R ® T'(L{(R,)) by (-, )
and ||-|I, respectively, and write s, sd,, and o’ for the linear spaces of linear
operators defined as follows:

s = Li(D ® E, R ® TUAR,))
A, =L DBE, RO TUA([0, D) @ 1f
A= L ® L:;(Et, F(L%([t’ OO)))), t>0

where & denotes algebraic tensor product throughout the paper and 1, (resp.
1) is the identity map on ; & I'(L3([0, »)) [resp. T(LE([z, ®@))], t > 0. It
is clear that 4, and &', ¢ > 0, are linear subspaces of 4. The latter will be
topologized as follows. For 1, £ € D @ E, define the seminorm |- || ¢ on
A by

Ixlle = [{n, x6)|, xed, 1,§cDXE

and write T,, for the locally convex topology generated by the family {||- ||, &
1, £ € D & E}. The completions of the locally convex spaces (4, T,,), (4,
7,), and (4', 7,.), t > 0, will be denoted by o, 4, and 4, 1 > 0, respectively.
The net {d, ¢ € R,} filters .
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In the sequel, we denote the Fock space I'(L%(R,)) simply by I" and
write 1 for the identity map on ;i & T. Then, 1 is the unit of 4 (regarded
as a partial *-algebra).

2.1. Stochastic Processes

Let I C R, be a subinterval. A stochastic process indexed by [ is an
sd-valued map on I. Such a map X will be called adapted if X(f) € o, for
each ¢+ € I. We denote the set of all adapted processes indexed by R, by
Ad(sd). We are interested in certain classes of members of Ad(sl). We call
X e Ad(sd) weakly absolutely continuous if the map t — (n, X(t)€), t € R,,
is absolutely continuous for , § € D ® E, and locally absolutely square
integrable if || X(-)||%¢ is Lebesgue-measurable and integrable on [0, #) for
eacht € R,, all m, £ € D ® E; the classes of stochastic processes determined
by these notions will be denoted by Ad(A),,.c and L2 (A), respectively. We
return to the discussion of stochastic processes in later sections.

2.2. Other Notation

The following notation will also be employed.

If % is a linear space and n a natural number, we write %" [resp. £®]
for the n-fold Cartesian product [resp. n-fold algebraic tensor product] of
% with itself. In case & is a Hilbert space, then ¥ is the n-fold Hilbert
space tensor product (Reed and Simon, 1972) of & with itself.

The set of all sesquilinear forms on ¥ will be denoted by sesq(&). If p
e sesq(X), then the value of p at (x, y) € ¥? will be denoted by p(x, y).
Throughout, a sesquilinear form is assumed to be conjugate-linear on the left.

The sum A + B of two subsets A and B of a linear space is defined by

A+B={a+b.aecA be B}
In particular, if a is some fixed member of the linear space, then

a+B={a+ b b e B}

3. MONOTONE MULTIFUNCTIONS

Central to much of the subsequent discussion is the notion of a mulrifunc-
tion.

Let % and Y be sets. A map P: ¥ — 2V is called a multifunction (or a
set-valued function or a multivalued function). The subset P(x) C Y is the
image or value of P at x € ¥. The values of the multifunctions encountered
in this paper are quadratic forms (Reed and Simon, 1972).
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The domain dom(P), range range(P), and graph graph(P) of P: ¥ —
2¥ are defined as follows:

dom(P) = {x € ¥: P(x) + 0}
range(P) = U, .o P(x)
graph(P) = {(x,y) e ¥ X Y.y € P(x)}

If dom(P) = &, then P is called strict. For simplicity, we shall deal mainly
with strict multifunctions.
A selection of a multifunction P: ¥ — 2% is a map ¢: ¥ — Y such that

o(x) € P(x), foreach xe %

Depending on the structures on & and %, it is often of interest to find out
whether a given multifunction has selections of some specified type: e.g.,
measurable, continuous, Lipschitzian, or integrable selections. For some
orientation about this problem, see Michael (1956) and Parthasarathy (1972).

In case Y is a topological linear space, the values of the multifunction
P: ¥ ~ 2% are called convex [resp. closed] if P(x) is convex [resp. closed]
for each x € &.

Let P and Q be two multifunctions from the set & to 2%. Then, the sum
P + Q@ is defined as follows:

P(x) + O(x) if neither P(x) nor Q(x) is empty
0 otherwise

P+ = {

x e &

The following notation will be repeatedly used. Let % be a set, Y a
linear space, y, some member of ¥, and P: ¥ ~ 2Y. Then, we define P(x)
X vo, x & X, by

P)Q@y,={pQyrpePk), xe¥

and denote the multifunction x = P(x) ® y, from ¥ into 2¥2Y by P ® y,.

3.1. Regular Multifunctions

We are principally interested in certain classes of multifunctions which
are monotone in some sense. We introduce the relevant notions of monoton-
icity and develop some aspects of the theory of such monotone multifunctions.

In what follows, let 3 = o or R, X A. .

The multifunctions considered in the sequel are maps from 3 into
25sa(BBD) 1t follows that if P is such a multifunction and z 3, then
P(z) is a set of quadratic forms on (D ® E)®. For {;, {; € (D ® E)® and
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z € 3, we define PN, {y) as the set

P4, )
= {p(L1, ): p is a sesquilinear form on (D ® E)? and p e P(2)}

and regard this as the value of P(z) at the point ({;, {;) € (D ® E)® X
(D ® E)®.

We consider multifunctions from 3 into 25985 that are regular in
some sense. Such quadratic-forms-valued multifunctions are encountered in
quantum stochastic calculus.

In the sequel, (-, -)) denotes the inner product of (} & IN®.

If B is a subset of &Q ® o, then the notation (¢, BLy) o) is specified by

(El, %C2>(2) = {<§1, b§2>(2)5 b e R}
for {;, {, € (D @ E)®.

Definition 3.1. A multifunction P: 3 — 254@BP) wi1] be called
regular if

P @My, & B &) = (M Oy, @alﬁlazﬁh(z)(gl ® gz»(z)

for some subset P g,0.8,(2) Of AQ® A, andall z e 3, W= elny, §
=v;QeB) u,v; € D, oy, Bj € LY 1Ry, j = 1, 2.

Remark 3.2. 1. A regular multifunction ®: d — 25e@ZE? giyeg rise
to an array (Popio0p ¥ B € LA(RL), j = 1, 2) of multifunctions from 3
into 22 The notions of monotonicity introduced below involve the diagonal
(Popap: @, B € LY(R,)) of this array.

We assume in what follows that the range of Pupqg is contained in some
unital subspace (&4 Q@ A)op of A ® A, i.e., a subspace containing the unit
1® ]l of 4 R .

2. If P 3 — 25esu@BED) g regular and such that P g, is of the form
Py @ 1, for some multifunction P,g: 3 — 2%, then we define the map

P: 3 — 25esa(@2B)3)
by
P@)(m, &) = (m, Pop(E), z¢€ 3

forallm, £ e DOE, withm = u ® e(a), § = v ®eB), o, B €
L316c(R)), u, v € D, and write P as P = P @ 1. In the sequel, we assume
that the range of P is contained in some unital subspace A g Of A, ie, a
subspace containing the unit 1 of A.
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3.2. The ®-Functional

For any ordered pair (n, £) in (D & E)?, the symbol (R ® I){7;, denotes
the closure of the linear space (4 @ S)(£ ® 1) in (R @ I)? and D, (-, *) is
themap from od X fto R QT )@ defined by

P y) =m@@x —yE  xye A

Then, (R ® I, is a Hilbert subspace of (R ® I')® and the map @, ¢,(-, ) is
a global ®-system for the pair (4, (R ® INy) over &, in the terminology
of Browder (1976).

3.3. Notions of Monotonicity

The notions of monotonicity employed in this paper are introduced
as follows.

Definition 3.3. A regular multifunction P: & — 25¢®EHD) wif] pe
called:

(i) monotone if for any ordered pair (1, £) € (D @ EY, with m =
u® e, £ =v®elP)a Bpe LiKnR), u, v, € D, the
multifunction x = Pyeea(x)(E ® n) from s to 20" e is O
monotone in the sense of Browder (1976), i.e., if

Re(((a — b)(E ® ), Ppp(x, Y2 = 0

whenever a € P,g.p(X), b € Popgop(y), and x, y € o, where
Re(- - -) denotes the real part of (---);

(ii) maximal monotone if P is monotone and for any ordered pair
M &in(DRE? withn =u®e(a),E=vR®eP)a P e
Li10c(R,), u, v € D, the multifunction x — P ,g,a(x)}(§ @ 1) from
A to 2B, i maximal @, ;-monotone in the sense of Browder
(1976), i.e., if the graph of the multifunction x = P g.5(x)(§ @
M) is not properly contained in the graph of any other mono-
tone multifunction;

(iif)  hypermaximal monotone if P is monotone and for arbitrary a,
€ Lyi(R,), there is a single-valued monotone map K,z from A
to (A R &Q)(,lB such that the multifunction x = Pg,g(x) from A
into 2¢#2ep satisfies the following two conditions: (a) the range
of Kug + Popag is all of (4 ® sﬁ)us, and (b) (Ko + @aBaB)

a continuous single-valued map from A ® &i)uB to oA.

Remark. 1. The multifunctions encountered in the subsequent discussion
are in general regular maps @: R, X & — 254@85) Thege will be called
monotone [resp. maximal monotone; resp. hypermaximal monotone] if the
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multifunction x » P(t, x), x € A, is monotone [resp. maximal monotone;
resp. hypermaximal monotone] for each ¢t € R,.

2. In addition to the weak topology T,, already introduced, we shall also
consider the strong topology 7, on &. This is the locally convex topology
whose family {||-|l¢: £ € D @ E} of seminorms is specified by

lelle = Ix€ll, xed, £€eDX®E

3. In what follows, we prove two results involving the above notions
of monotonicity. Analogs of these results are well known in the context of
Banach spaces (Browder, 1976).

Proposition 3.4. Let P be a regular multifunction from s into
25esa(@BEP) and o, B € LEio(R,). Then:

_ (i) The multifunction P,g.s has convex and 7,-closed values in
2(&‘1@94)“[5.

({i)@)Ifx e d,a e (AR A)up, {x5: 8 € A} is a net that 7,-converges
1o x, a5 € Popap(xs), and the net {az: 8 € A} T7,-converges to a, then a
€ @aﬁaﬁ(x)' - .

(i)b) If Pisof theformP =P I, x e A, a € g @1, {x5:8 €
A} is a net that T,-converges to x, a5 € P,pqp(Xs), and the net {a;: 8 € A}
T,~converges to a, then a € P,pg,p(x).

Proof. (i) By the definition of a maximal monotone multifunction, a
lies in P opop(x) iff

Re({((a — b)(E ® ), P, 5(x, YD) =0

for all (m, £) in (D @ E)*, withm = u ® e(a), § = v ® e(B), u, v € D, and
all (y, b) € A X (A R A)op With b € Ppep(y). As the set

Pagapyp®) = (a € (4 ® A)ag: Re({(@ — BYE ® M), Pyp(x, M) = 0
V(n, §) e (D ® E)?, with
N=uQe(),&=v®elP)uveD}

is convex and T,-closed, and

Papap®) = N{Pagap p(0): (3 b) € s X (A Q H)op With b € Pogap(y)}

it follows that P og.a(x) is also convex and Tw-close~d. _ B
(ii)(a) By the monotonicity of P, if (y, b)) € A X (A Q o),p, With b
€ Pupap(y), then

Re({(as — bYE @ M), P p(x5 Y)2)) = 0 *)
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for each & € A and all pairs (m, £) € (D ® E)?, with m = u ® e(a), £ =
v & e(B), u, v € D. By the definition of @, (", -), the net { P, 5(xs, ¥): d
e A} converges in (R ® NP to &, - (x, y) whenever the net {xz: d € A}
T-converges to x e~§$ Furthermore, the net {a; — b: 8 € A} 1,-converges
toa — bin d & o whenever the net {a;: 8 € A} 1,-converges to a in
A @ sA. Hence, taking limits in (%) gives

Re({(a — DIE® M), Ppre(x, ) = 0

forall(m, §) € DR E)Y, withm = u ® e(a), £ = v ® e(B), u, v € D. By
the maximal monotone nature of %P, it follows that a € P g.a(x).

(ii)(b) The proof is essentially as in (ii)(a), noting that as ¥ = P & 1,
the set P g,p5(x), x € o, has the form Papap(t) = Pog(0) @ 1, x . Hence,
if a5 € Pup(xs) ® 1 and (3, b) € AX(AR 1), withh e Pup(y) ® 1, then
there are d; € P,p(x5) and be Pg(y)suchthata = 3, ® 1 and b = by @
1. Hence (%) above reduces to

Re({((d@5 — b) ®~11)(€ M), P (x5 M2y
= Re({(@ — b)&, n)m, (x5 — »)E)

The assertion is deduced from this.
This concludes the proof. m

Theorem 3.5. A regular, hypermaximal monotone multifunction

P: d > 25eADEE)D)
is-maximal monotone.

Proof. The following proof extends the main arguments of Theorem 3.9
in Browder (1976) to the present setting.

Let£EQOme DR®EL withn=u®e(a), E=vQeP)a, p e
LY 16c(Ry), u, v € D. The claim will be established by showing that whenever
(b e d X (4R ), and

Re(((a — b)(§ © ), D, 5(x, We) =0

forall (x,a) € A X (4 Q 54)(,3, with a e @agaﬁ(x) then b € Popgop(y).

As P is hypermaximal monotone, there is a monotone single-valued
map K.p: A &Q)aﬁ such that the range of K5 + Pypap is all of (d
& &4)043 and (Kyg + Popap) ! is a continuous single-valued map from (d®
&Q)uﬁ to . By the monotonicity of Kaps

Re(((Kop(x) — Kag(M(E @ M), Py (X, »))2)) = 0
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Adding the last two inequalities gives
Re({(a + Kog(x) — b — KogONE R M), Pirp(x, M) =0 (3.1

Let ¢ be a fixed but otherwise arbitrary member of (d® 574)(,3 and ¢
e (0, 1). Define d, and x, by

d,=b+ Ku(y) + tc
X, = (Kap + Papop)”'(d)
Then, d, € Kyp(x) T Pagap(x,), whence
d, = Kup(x) + q; for some ¢, € Pogaplxs) (3.2)
Replacing the pair (x, @) in (3.1) by (x;, g,) and using (3.2), one gets
Re({c(£ ® M), o M) =0, VYV, &) e DYEP (3.3)

When 1 0, d, 7,-convergesto b + K,g(y) in (&i K &Q)as By the hypermaximal
monotonicity of %, the map (K, + Q’QBQB) is continuous from (4 & &Q)QB
to . Hence, x;, = (Kop + Papap)” '(dy) converges to (Kop + Pogap) (B +

Kop(y) = xo in o as ¢ 4 0. Since ¢ can be represented as a finite sum ¢ =
3, ci; & ¢y, one sees that

(c(E @ M, Prr (X Yy — (& B M, Py p5(x0, M)2)|
= 2 (e W ||{eam, (i — X0)§)|
J

Hence, allowing ¢ 10in (33) gives
Re({c(€ @ M), D 5(x0, W) =0, V(n, ) e OXD Ey (3.4

Since ¢ is arbitrary, replacing ¢ by —c does not change the inequality in
(3.4). Hence

Re((c(€ ® m), ‘D(n,g)(xo, Y»(z)) = (), V(n, § € D @ E)z (3.5)

Analogously, replacing ¢ in (3.4) by ic or —ic (with i = /—1) does not
change the inequality in (3.4). Since (-, ), is conjugate-linear on the left,
it follows that

Im({c(€ @ M), Pep(X0, Y2) = 0, Vin, § e DR E} (3.6
where Im(: - -) denotes the imaginary part of (- - ). Hence, from (3.5) and (3.6),
(c(E ® ), (I)(T, g)(xo, )’)>(2) =0

for all (m, &) € (D ® E)? and arbitrary ¢ in (&4 ® .94),13, whence @, g)(xo,
y) = 0 for all (n, §) € (D ® E)?, since (4 ® &i)ag contains 1 &® 1. This is
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equivalent to m ® (xg — y)§ = 0 for all (n, £) € (D ® E)?, whence x, = ).
Hence, y = (Kup + Popap) "0 + Kop()), whence b + Koo(y) € Kop(y) +
Popop(y), thereby forcing b € Pop.p(y). This concludes the proof. m
3.4. The Class Hypmax(R, X )

Let idg be the identity map on . Then, the single-valued map

dag(I®RL d—->AR1
defined by
= idgln®1=x&1, xed

is monotone since

((dg(0) ® 1 — ida(y) ® 1)(E ® M), P (x, Yoy = Ilx — Yll7e

foralix,y e fd,n,g e D®E.
In our discussion of quantum stochastic differential inclusions in Section
5, the relevant class of multifunctions is defined as follows.

Definition 3.6. The class Hypmaxg& X &) is the set of all regular
multifunctions @: R, X d — 2=4PEB) with the following properties:

(i) Relative to the representation of % in Definition 3.1, the multifunc-
tion Ppqp is, for arbitrary o, B € Ly(R,), given by

P opap(ts X) = Pog(t, ) @ 1, tx)eR. XA (37

for some multifunction Pug: R, X o — 2%, with range contained
in a unital subspace SZQB of sA.

(it P is hypermaximal monotone, with its associated monotone, contin-
uous, single-valued map K, in Definition 3.3(iii) given by

Kp) =idg) ®1, xed (3.8)
for all a, B € L310(R).

4. RESOLVENT AND YOSIDA APPROXIMATION

Let ? e Hypmax(R, X sf). Then, by equation (3.7), for a, B €
L??,IOC(RQ-)’

Popap(t, X) = Poglt, x) ® 1, (t,x) e R, X o
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As P is hypermaximal monotone, the multifunction
x = idg(x) @ 1 + MPyg(t, x) @ 1), xed
is a surjection onto sﬂaﬁ ® 1 for each t+ € R,, A > 0; moreover, the map
(da() ® 1 + MPue(t, ) @ 1)7!

is both single-valued and continuous from &1,3 ® 1 to A, for each t € R,,
all A >0, and a, B € LY o(R}). As

idg(0) @ 1 + NPup(t, ©) ® 1) = (idg(x) + NPup(t, X)) D 1

(1, x) € R, X 4, it follows that the multifunction x — idg(x) + AP (2, X),
xed,isa sur_]ectlon onto &daﬁ for each ¢ € R,; moreover, the map (idg(-)
+ NP, )1 is both single-valued and continuous from ) op tO o, for
eacht e Ry, all A > 0, and all o, B e LY (R,).

We introduce the following maps:

J)\,aB(t’ ) = (ldﬁ() + )\PaB(to '))_1
Prapt, ) = < (dal) = Jnalt, )

t € R, A >0, and a, B € Lyj(Ry). These are single-valued maps. They
give rise to the quadratic forms J\(t, x) and P\(t, x), (¢, x) € R, X o, defined
as follows:

J)\(t7 x)('ﬂ, g) = <’ﬂ’ J)\,O(B(t? x)&)
P)\(tv x)(n’ g) = <7], P)\,aﬂ(tv x)g)

N>0,(,0) e R, Xsl,m & e DOE, withn = u ® e(), £ = v ® e(B),
a, B € LoYo,loc(Rv)’ u,v e D.
In terms of the maps just introduced, we define $, and P, by

$tx)=JL(t,x) X1
P, x) = P, )R 1

A>0,(x e R, X A

The single-valued map J, [resp. $\] will be called the resolvent of the
multifunction P [resp. %] and the single-valued map P, [resp. P,] will be
called the Yosida approximation of the multifunction P [resp. P].

Remark. 1. A number of the properties of the maps J, and P, that are
employed below in the proof of Theorem 5.6 are described in this section.
To this end, we shall use the following facts.
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2. If K is a closed convex subset of @ ® I, then the projector of best
approximation py of i @ T onto ¥ is characterized by

Ix — p«OONl = ein?ffllx -6, xeR®T

It follows that ps(0) is the member of K with the least norm. Define m(J{) by
m(H) = px(0)

When % = {xg}, a singleton, then clearly m(¥) = .

3 Fr£ e DRE, o, B € L3R, (t, ¥) e R, X A, and P e
Hypmax(R, X &), it follows from Proposition 3.4(i) that P,(f, x)€ is a
closed convex subset of R @ I', and m(P,4(t, x)€) lies in P,pa(t, x)§. This
gives rise to a map mgp(t, x) from the set D ® E to R ® T defined by

map(t, )& = m(Pog(t, x)E), £ e DEE

As m{Pg(t, x)E) lies in Pg(t, x)€ and every member of P,p(z, x)§ is of the
form z&, for some z € P,g(t, x), the map m,g(t, x) may be identified with a
member of P.g(t, x).

Theorem 4.1. Let ? « Hypmax(R, X &), A > 0, and o, B €
L?,loc(Rr)' Then:

1(i) For each t € R,, the map x = J, ,3(t, x), x € o, is Lipschitzian
with Lipschitz constant 1; (ii) for each 7 € R,, the map x = P 43(2, x), x €
A, is Lipschitzian with Lipschitz constant 1/\; (iii) Py(t, x)(n, &) € P(s,
Traplt, )M, &), forall (4, x) e R, X &, m, £ e DR E, with = u ®
ea), E = v®eB), o, B € LY1o(R,), u, v € D; and (iv) for each A > 0,
the map P, = P, ® 1 is monotone.

2. For arbitrary , £ e D® E and (1, x) € R, X A,

I Prop(t, x) = mog(t, D3 = lImag(t, D2 — IPrap(t D3k

3. As A 4 0, 1\, x)(n, &) converges to (v, x£) for arbitrary m, £ € D
@ Eand (1, x) € R, X HA.

Proof. 1(1) + (ii): Lett € R, A > 0, a, B € LY1c(Ry). As x = Jy 4p(t,
x), x € 9, is surjective for each t € R,, then given y; € &, j = 1, 2,
the inclusions

Y € X + )\P“B(t’ xj), J = 1, 2

can be solved for x; 4, j = 1, 2. Hence, there exist v, € Poglt, x), j =
1, 2, such that

y=x+Ny;, j=12
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whence
Iyi = y2ll2: = lIxi — x2ll2e + Nlvi — vall3e
+ 2X Re({((v; — v2) ® D(E ® M), D 5(x1, 1))
2 [l — xall2e + Nlvi — wlide

forallm, £ e DQE, withm = u Qe(a), £ =v el o B e
LY(Ry), u, v € D, since P is monotone. Hence

X, = lloe =1y — yollnee VM Ee DYE
showing that for each ¢ € R,, the map x ~ J, o3(t, x), x € A, s Lipschitzian

with Lipschitz constant 1, and

1
flvi = wolle = N I — yallae Vn, £ e DOE

showing that for each ¢t € R,, the map x = P, .4(f, ), x € A, is Lipschitzian
with Lipschitz constant 1/\.
(iii) By the definitions of J, ,g and P, g, One gets

1
Proglt, x) = X [x = Ihep(t, 0]

1 1
€ 3 rap(t, 2) + NPog(t: Jrap(t, )] =+ Jrap(t. )

= P(xB(t’ J)\,(xﬁ(t’ x))
whence

P)\(t’ x)(ﬂ, ‘e::.) € P(t’ J)\,aﬁ(t9 x))('ﬂ’ g)

forall (1, x) e R, X A, M, £ e DR E, withm = u ® e(a), £ = v e(B),
av B € L?,IOC(R+)9 us vV e D
(iv) To show that for each N > 0, the single-valued map

P=P, L R, X~ sesq((D® E)?)
is monotone, let x;, x, € A, a, B € L¥1(R,), and (7, §) € (D @ E). Using
X = Dap(t, X)) + APy op(2, X)), t e R, j =12
we get
Re({((Pop(t, X1) = Propl(t, X2)) @ 1)(E @ M), D p(x1, %2))2)
= Re({((Prap(t; X1) = Prap(t, %2)) @ 1) @ M), Dy (I ap(t, X1,



Hypermaximal Monotone Stochastic Inclusions 337

Draplts xz)»(z))
+ A Re({(Prag(t, x1) — Prop(ts x2)) ® 1ME @ 1), P (Prap(ts x1),
Py oa(t, )2y

= Re({((Prup(t, X1) — Pyop(t, %)) @ 1ME ® M), DN opt, X)),
Srap(ts X2))2)
+ MIPyap(t, x1) — Py opt, xz)"%,g

=0, since P 5t X)) € Pop(t, Nop(t, %)), j=1,2

showing that the single-valued map P, = P, ® 1: R, X & — sesq((D ®
E)?) is monotone, as claimed.
2.Let(r,x) e R, X ddandm, £ € D @ E. Then

I1Prap(t, X) — map(t, D)7
= ||mop(t, D2 — IProp |2
— 2 Re({(map(t, x) = Py op(t, X))E XM, Pyap(t, 0)E))
= [Imqg(t, x)ll%,g — 1P o2, x)"%,g
= 2 Re({((map(t, x) = Prop(t, X)) @ DE @ M), m & Py o5(t, 0)E)z)

NOW, as m(xB(t’ -x) € PuB(L x)s P)\,OLB(t’ x) € PQB(L J)\,&B(tv x))’ P)\,uﬁ(t’ x) =
(IINx = T\ ap(t, X)), and P is monotone, it follows that

Re((((mqp(t, X) = Pyop(t, X)) @ 1§ ® M), 1 & Py oplt, 0E))

Re({(mqp(t, X) — Pyop(t, X)) @ DNER M), N ® (x — Jy 0p(t, 0))E)2)

Re((((map(t, X) — Prop(t, X)) @ 1)E ® M), P p(x, Sy ot D))

=

S P =

Hence
”P)\,aﬁ(ta x) - maB(t’ .X')"%’g = ”maB(t’ -x)HE]E - "P)\,uﬁ(t’ x)”%],&
with the corollary that
1Py oag(t, e = lmop(t, x)llne

forall A >0, o, B € L310c(R), M, £ e DOE, (1, x) € R, X .
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3. As
flx = Jyop(ts Dine = M Praplts Dllae = )\”muﬁ(t’ 0 lle

it follows that J,(t, x)(m, §) converges to (, x§) as A lOforallm, £ e D
RE, (1, x) € R, X A.

This concludes the proof. =

5. HYPERMAXIMAL MONOTONE INCLUSIONS

Let a(f), a*(g), and () be the annihilation, creation, and gauge opera-
tors of quantum field theory associated with f, ¢ € L3(R,) and 7 €
Lz 10(R,) (Hudson and Parthasarathy, 1984). [Throughout, the triple (f, g,
7r) is assumed fixed.] Then define A(#), A; (1), and A.(r) by

A1) = a(fXppy) @ 1
A7 (O = a(gxpy) ® 1
AL = My, ® 1

te R+ where ¥, is the indicator function of the Borel set / C R,. The maps
As, A7, and A, from R, to A are evidently adapted to the filtration {s{,: ¢
e R,} of «.

Letp, g, 4, v € Lio(sA), £, 8 € LR1oe(R.), and T € Liy)oc(R,). In the
sequel, we interpret the stochastic integral

J (p(s) dAr(s) + q(s) dAi(s) + u(s) dA; (s) + v(s) ds)

0

(t, 1) € R% with £y < 1, as in Hudson and Parthasarathy (1984).

5.1. Stochastic Inclusions

A map ®: R, — 2%, with closed values, will be called a multivalued
stochastic process indexed by R,. Such a process is adapted (to the filtration
{d:t e R,} of ) in case () C s, for each r e R,. When ® is adapted
and the map ¢ = ||®@)||,z ¢ € R, [see p. 2006 of Ekbaguere (1992) for the
definition of |||, ¢ for M C A, isin LL(R,) forall m, £ € D ® E, then
® is called locally absolutely square integrable. The notation Lﬁ,c(&@)mvs
denotes the set of all locally absolutely square-integrable muitivalued stochas-
tic processes on R,, and we write L2 (R, X &)mvs for the set of all multifunc-
tions ®: R, X o — 2%, with closed values, such that the map ¢t — B¢, X(©)),
t € Ry, is in LE () for every X e L2 ().

For ® e L2 (R, X HA)pmys, let
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Ly(®) = {¢ e [} (R, X s): ¢ is a selection of ®}

Then, if ® € LLR, X A X € L} () and M denotes any of the
stochastic processes Ay, A; ,A;and s » 51,5 € R,, we define the stochastic
integral of ®(-, X(+)) with respect to M by

f D(s, X(s5)) dM(s) = {ft
g

o

o(s, X(s)) dM(s): ¢ Lz((D)}

fo, t € R,. This leads to the notion of a quantum stochastic integral [resp.
differential] inclusion, as introduced in Ekhaguere (1992).

In the sequel, E, F, G, H lie in L3 (R, X )y and we are concerned
with the following initial value stochastic differential inclusion:

dX(1) € —(E(@t, X(1)) dAL(t) + F(t, X(1)) dA(1) + G, X(1)) dA] (t)
+ H(t, X(8)) db), almostall ¢ e R, (5.1)
X(0) = x for some X, € s

This inclusion may be recast as follows. For a, B € L(R), define the
multifunction Pug: R, X s — 2% by

Puplt, x) = popg(DER, x) + vg(OF(t, x) + 0.()G(2, x) + H(t, x)

where () = (a(®), TOBMD)y, ve(t) = (F(O), B(D))y, and o4(t) = (a(),
g®)y, (&, x) € R, X &, and (-, -)y is the inner product of the Hilbert space
Y. This gives rise to the multifunction

P: R, X o - 2%saD8R)
defined by

P(t’ x)(Th E) = <”ﬂ’ POLB(t’ -x)g) = {<T]’ paB(ta x)g>: Paﬂ(t, x) € PLxB(t7 x)}
(5.2)

&) eR XA nEecDQE, withn=u®e(), £ =vQePB), o p
e L¥1(Ry), u, v € D. Then, by Theorem 6.2 of Ekhaguere (1992), the initial
value stochastic differential inclusion (5.1)y is equivalent to the following
initial value nonclassical differential inclusion:

5;(1], X&) e —P(1, X()(m, &), almostall te R, (5.1)p

X0)=x e d
for arbitrary (v, §) € (D ® E)%.
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Definition 5.1. A map ¢: R, — o is a solution of Problem (5.1), if it
is weakly absolutely continuous and

do() e —(E(t, (1)) dAL(t) + F(1, ¢(t)) dAs(®) + G(t, ¢(®) dA; (D
+ H(t, o(t)dr), almost all r e R,
¢0) =x € A

Remark. 1. For accounts of the theory of classical differential inclusions,
see Aubin and Cellina (1984), Deimling (1992), and Kisielewicz (1991).

2. Notice that Problem (5.1)p presents Problem (5.1), as a nonclassical
differential inclusion of nonlinear evolution type.

3. The subsequent discussion is concerned with the problem of the
existence and uniqueness of a solution of Problem (5.1), [or equivalently
Problem (5.1)p], under a monotonicity condition on P.

Definition 5.2. Problem (5.1), will be said to be of hypermaximal mono-
tone type if the multifunction P in (5.1), is such that = P & 1 lies in
Hypmax(R, X s{). Similarly, Problem (5.1), is Lipschitzian if P is Lipschit-
zian, as explained in Ekhaguere (1992).

Remark. 1. In Ekhaguere (1992) we established the existence of a solution
of a Lipschitzian stochastic differential inclusion, and proved a relaxation
theorem giving the relationship between the solutions of such an inclusion
and those of its convexification.

2. The main result of this section is Theorem 5.6. It establishes the
existence of a unique adapted solution of a stochastic differential inclusion
of hypermaximal monotone type. This solution is arrived at by a limiting
process involving the unique adapted solutions of a one-parameter family of
Lipschitzian stochastic differential equations. We shall first introduce these
equations.

5.2. The Approximating Lipschitzian Equations

Let P in (5.1)p be such that ® = P & 1 is in Hypmax(R, X o). Let
tx) e R, X A, N> 0,and a, B € LY 1o(R). Using

Pop(t, X) = mag(DE(L, x) + va(OF(t, x) + o (DG, x) + H(t, x)
we have
Pop(t, Jrnap(ts X)) = PapDE(E, Sy op(t, X)) + v(OF (L, Jyap(t, X))
+ oo (NG(L, Jyap(t, X)) + H(t, Iy o, X))
Then, since Py qp(t, X) € Pug(t, Jyop(t, X)) by Theorem 4.1(1)(iii), it follows
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that there are E), 3(t, x) € E(t, J) op(t, X)), Frop(t, X) € F(t, ]y o2, X)), Grop(t,
x) € G(t, Jyop(t, X)), and H, og(t, ) € H(2, J) op(2, X)) such that

Py oplt, X) = Pap(DE\op(t, X) + Va(DF) oa(t, X)
+ 0, (DG op(t, X) + H) op(t, %)

For Q € {P, E, F, G, H}, define the quadratic form Q,(¢, x) by
Q)\(t’ x)('ﬂ, g) = <T]a Qh,uﬁ(t, x)&)

form, £ e DRE, withm = u® e(a), § = v eB), o, B € L31oRY), 1,
v € D, and introduce the initial value stochastic differential equation:

dX\(n) = —(Ex(t, X,\(0) dA(r) + Fy(t, X\(D) dAK(D) + Gy(t, Xu(D) dA; (D)
+ H\(t, X\(9)) dr), almost all ¢ e R, (5.1,
X)\(O) =Xy € (&

This equation is equivalent to the initial value differential equation

& 408 = ~P XN, O, almostall e R, (D,
X\0)=x e o

for all (n, £) € (D ® E)?, where Py, A\ > 0, is the Yosida approximation of
P described in Section 4.

As P, is Lipschitzian for each A > 0, Problem (5.1), has a unique adapted
solution which is arrived at by Picard’s method of successive approximation.

5.3. The Main Result

Throughout the rest of the discussion, we assume that Problem (5.1),
or equivalently Problem (5.1)p, is of hypermaximal monaotone type.

Notation. Let I = [Ty, T), vyith T> T, = 0. Then, C(l, &Z) is the locally
convex space of maps: ¢: I = s whose topology is generated by the family
{lllconme: M, € € D @ E} of seminorms defined by

Hﬂmm=$ﬂﬂwm, MnEeDXE

We shall show that for each compact subinterval I C R,, a solution of
Problem (5.1), converges in C(I, &) to a solution of Problem (5.1), as A d
0. This will be done in stages as follows.
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Proposition 5.3. If @, and ¢, are two solutions of Problem (5.1), satis-
fying ¢;(0) = x)0 and @,(0) = Xy, for some xjg, X20 € s, then

loi® — @2(DMlnge = llxi0 — X20llne
forallte R, n, E e DY E.

Proof. Let ¢ denote either ¢, or @,. As ¢ is a solution of Problem (5.1),,
there are single-valued maps wg, wp wg, ®y of R, X & into 4 such that
wglt, x) € E, X), ot, x) € F(t, x), ogt, x) € G(t, x), wg(t, x) € H(, x),
(t, x) € R, X &, and

de(®) = —(wt, e(D) dAL(t) + wplt, () dA(D) + wslt, ¢(1) dAZ ()
+ wylt, ¢(2)) db), almostall t e R,

Then, form, £ e D ® E, withm = u Q@ e(a), § = v Q@ e(B), o, B €
LY10e(R}), u, v € D, we have

dlle:(®) — e:001l%¢
= —2 Re({((de,(t) — dea(t)) @ 1)(E ® M), P p(@1(D), €2(N)))) dt
= =2 Re({((Pap(t; $1(0)) — Pop(t, @2(1))) ® 1)(€ ® m),
D, (@10, P22y dt
where
Pap(t, @(1) = Pap(Dwe(t, @(1) + va(Dwp(t, (1)
+ Gu(Dwg(t, () + @plt, 9(1)

t € R,. As pog(t, 9()) € Pup(t, (1)), t € Ry, and P = P @ 1 is monotone,
it follows that

dlifei(®) — (Pz(t)"ng =
forallt € R,, n, £ € D @ E, whence

e — @allne = ll@(0) — @20 l.e = llx10 — X0l
forall t € R,, m, £ € D @ E. This concludes the proof. =

Remark. We have seen in Theorem 4.1(1)(i) that the resolvent J, of P
has the property that x = J\ 45(f, X), X € oA, is Lipschitzian, with Lipschitz
constant 1, for each t € R,, A > 0, and «, B € LY (R,). To discuss the
convergence of the net {¢,: N > 0} to a solution of Problem (5.1),, where
@, is a solution of Problem (5.1),, we require a continuity condition on the
single-valued map 1 = Jy (%, x), t € R,, for arbitrary x e A, A >0, and



Hypermaximal Monotone Stochastic Inclusions 343

a, B e L¥(R,). Under the continuity condition, we first establish a priori
bounds on [|ex()ll,¢ and [(d/dn)(n, e\()E)| that are independent of N, for
eachr e R, and m, £ € D Q E. Since we are interested in the limit as
A 4 0, we can restrict \ to the interval (0, 1], as we do below.

Proposition 5.4. Let A e (0, 1], ¢, a solution of (5.1),, (£, x) € R, X
o, and s > 0. Suppose that there are a monotone increasing function ¥ R,
— R, and a collection {c,&: m, £ € D @ E} of continuous functions from
R, — R, such that

Irapt + 5, 2) = Froplt, D llne = Mgy o Dne T Y(llxlne)

forallm, £ e D@ E withm = u R eln), £ =v el a, B e

LR, 4, v € D. o

Then, for arbitrary m, £ € D & E, there are continuous functions k¢,

KZ: R, ~ R,, independent of \ e (0, 1], such that the following estimates hold:

@) or®llne = kR, for all X € (0, 11, € R..
() |(@lde)n, er(E)| = kA(), forall t € Ry, A e (0, 1].

Proof. The estimates employ Gronwall’s inequality (Walter, 1964).
(1) We have

d
a loa® — xo I!%,g

= =2 Re({((Prop(t; () @ 1)(E B ), P p(@r(D): X0))2)

= =2 Re({((Prap(t: 9r(D) — Prog(t, X0)) ® 1(E ® M), Pinp(0a(0): X0))2)
~2 Re({(Prag(t, X0) @ D(E B M), Py p(@r(D: X0)) )

= —2 Re({(Pras(t, x0) ® D(E @ M), P gy(er(D), X))

as P, = P, & 1 is monotone, by Theorem 4.1(1)(iv).
But

—2 Re({(Pyap(ts X0) @ 1) @ M), D s(0r(®), x0)))
= 2| ({(Prap(t, X0) ® 1)(E ® M), Piqe(@r(D), X0))2)]
= 2|{Py up(t: X0)E, W|*|(M, (@r(1) — x0)E)]
= 2|Prapt X)) lngllon — xollug

= 2lmap(t, X))l ellon — Xollge
[by Theorem 4.1(2)]

< [lmap(t, )12 + llon — xoll3e
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Hence
d 2 2 2
p lon(® — xollne = lmap@® x)ll5e + llon — xoll7¢

whence, by Gronwall’s inequality, we have
lox(® — xollne = &R

where kﬁ?g: R, — R, is a continuous function, independent of A. Hence,
lor®llne = KR, with k§2()) = [lxollne + k), for each t € R, and all
A e (0, 1].

(ii) Let t, s € R,, A € (0, 1]. Then

d
7 loat + 5) — @x(l3e

~2 Re({((Prop(t + 5, At + 5)) — Prop(t, 91())) @ 1)(§ B ),
D 5(@r(t + 5), o))
=2 Re({((Prop(t + 5, gat + 5)) — Prap(t + 5, (1)) ® 1)(§ @ m),
D p(@r(t + 5), o)) 2y
—2 Re({((Proa(t T 5, A1) — Prop(t, or(0) @ 1)(E @ m),
D (@t + 5), Oy
= —2 Re({((Prop(t + 5, @1(1)) — Prog(t, o:(1)) @ 1)(E @ m),
D (@t + 5), eA(D)N )
[since P, = P, ® 1 is monotone, by Theorem 4.1(1)(iv)]
= 2||Pyop(t + 5, @) — Py gty x5 ellon( + 5) — o)l
Appealing to the inequality of the proposition, we have

|Prap(t + 5, @\(8)) — Pyop(t, @x())lne

1
=X [/n0pt + 5, 2 (D) — Jraplt, OO Ine

= Cnﬁ(t)s(”'])\,cxﬁ(t’ ‘P)\(t)) ”n,& + ‘I’("‘P)\(t)"n,g))
= CoeOs(lon(® + APy op(t, O llne + YU @Al 4)
= cpeOs(lexllne + [Proplt 3 lne + T(lon®ln0)

)

= cﬂg(t)s<k513g)(l‘) + g;('f]: e()§)
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by (i) above, where k& is the continuous function on R, given by k3(r) =

K20 + W(kG2(r), and since ¢, is a solution of (5.1),.
Hence,

d
o lea(t + ) — @l

= 2cng(t)S<k$?£(t) + lZld? (. ex(0) )H ot + 8) — o@D le

2
= Sz(kg?g)(f) + }dit (n, ‘Px(f)@) + (e loa(t + 5) — e l3e

whence
leat + ) — ex@ll3e
=< llea(s) — (0|2 ¢ exp[Cre(D)]
)
by Gronwall’s inequality, where C,¢() = [} [c,e(r)]*. Dividing both sides of

the last inequality by s? and letting s { 0, we get
2

+ 257 J dr exp[Coe(t) — Cre(n] ([kﬁfg)(t)]2 + I% M, e(N&)

[

d
’ m, (D&

2
exp[C, ()]

<4
<|% tn euom

=0

t 2
+ ZJ dr exp[Cog(t) — Coe(n)] (Iki?g(t)]z + %(ﬂ e\(nE) )
0

= ||mep(0, x0) 113 ¢ explCre())]

; 2
+2 f dr exp[Coe(t) — Coe(P)] ([kﬁg(mz + §;<n, eANE) )
0

[ since

by Theorem 4. 1(2)]

2

d
E <TI, on() =||P )\,uB(()’ e (0)) ”%,g = ”maB(O’ Xo)“%,g

t=0

' 2
= K2 + f dr k()

0

%(m er(NE)
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where k%, k) R, — R, are continuous with obvious definitions. Then, by
Gronwall’s inequality, we finally have

d
d—tm, o) =kK2(®, teR,

for some continuous function k2: R, — R, independent of X € (0, 1]. This
concludes the proof. m

Remark. We look next at the issue of convergence of the net {@y: A &
(0, 11}, where ¢, is a solution of (5.1),.

Notation. Let Ty, T be arbitrary, with 7> Ty = 0 and I = [T, T). Then,
with k2, m, £ € D @ E, as in Proposition 5.4(ii), we define the number

k%),TmE by
&" Tn§ - SUP ksng(t)’ N, 'E eD @ E
I=(Tp, )

Proposition 5.5. Let @, be the unique adapted solution of Problem (5.1),,
A > 0. Then, for each compact subinterval I = [T, T) C R,, with T > T
= 0, the family {¢,: A € (0, 1]} is a Cauchy net in C(J, 1) which converges
on I to a weakly absolutely continuous adapted member ¢ of C(/, ).

Proof. Let\ € (0, 1]and I = [T, T). Then, by Proposition 5.4(ii), we have

A, ), B] = [ (0, 9x08) = K2D = K1

forall(\,) e (0,11 X Tandm, £ e DO E, withm=uQe(a), E=v®
eB), o, B € L31o(Ry), 4, v € D. This shows that {P,(z, ox())(m, £): N €
(0, 1]} is a bounded net of complex numbers for arbitrary t € Tand 7, £ €
D Q®E.

Next, for A, . € (0, 1], t e L,andm, £ e DQ E, withm = u ® e(a),
E=v®elP) o, B € Lyio(Ry), u, v € D, we have

1
HECRENG

j dller(s) — 0,12
0

t\)lr—

]

j Re({(dpr(s) — de ()E M), (@n(s) — @u(s)HE)
0

—J ds Re({(Pyap(s, PA(5)) — Ppuap(s, @u(ONE, mXm, (@x(s) — @, ()E)

0
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*f ds Re({(Prap(s, @a(5)) = Pyap(s, ¢u(5)) @ 1)(§ @ m),

0

D@ 5(@ONS), Pul))2)

- J ds Re{{(Prop(s, @x(5)) ~ Pyuaals, ¢u(s)) ® 1)(§ ® m),

0
(D(n,é)()‘P A.aﬂ(s’ or(s)), uP (S5 ‘Pu(s))))(z)

+ <((P)\,O¢B(s’ (P)\(S)) - Pu,aB(s’ “Pu(s))) ® L[)(g ® T])s
Do 5 (Inas(S> OGN T ap(s, €Ny}

{by using x = J;op(t, x) + 0Pgp(t, x), ¢ > 0]

('t

- J ds Re{{((Prog(: @A) = Ppap(s, @) ® D(E & ),
0

IA

D ey AP op (5, @A(5)), WP ap(S, @)}
[since P = P & 1 is monotone and 1(iii) of Theorem (4.1) holds]

J ds Re{)\<Pp.,ozB(sv (Pp.(s))’ ’ﬂ)(’ﬂa P)\,uB(sa ‘PP\(S)»
0
+ WPy ap(s, OAE MY, P op(s, 9,())E)}

- J ds (N|[(M, Prop(s, @B + w|(M, Poapls, @u(s)E)]D)
0

As

IX Re((Pyyap(s, @u(s)E MXM, Prap(s, ex())E)]
= M{Puop(s, @u(NE M| [(M, Py apls, era())E)|

A
= Z }(TL Pu,aB(S’ “Pp,(s))§>l2 + M(’ﬂa P)\,aB(s7 ‘p)\(s))£>\2
and (similarly)
l“" Re(<P)\.,aB(s’ (\D)\(S))§7 'ﬂ)('ﬂ, P;L,QB(sv ('P[L(S))§>)t

= % M, Prap(s, @A(DE|> + 1](n, Puop(s, ¢.(9)8)]?
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it follows that

Lo - 0,0l
= i J'O ds O\I("], PI.L,(XB(S’ ‘Pu(s))'E)[z + M‘(n, P)\,uB(S’ ('p)\(s)»lz)

t
= 2O W 7o)

forallz € I\, n € (0, 1}, m, § € D @ E, showing that the net {¢\x: A €
(0, 11} is Cauchy in C(Z, &) and converges to some ¢ in C(I, s{) as A »L 0.
This ¢ is weakly absolutely continuous. To see this, let Ty = 1, < f; < -

< t, = T be a disjoint partition of [T}, T), with 27=¢ (t1 — ) < 0, and m,
EcDREwithn=u®e(a),E=v®eP),a,P e LYJOC(RQ,u,v e D.
Then, from

‘ (m, ‘Px(s)@‘ IP)\(S o)), ‘E)[ = Tng

we get

s

[, ea(t-D€) — (. A(1)8)]

f +1
P

/)

fji+1
= ds
b

7
= MR rne(tin — 1)

Hence, letting X 4 0 and summing over j, we get

ds g; (m, %(S)E)'

& o o08)

n—1

n—1
2 I(”f], ot ) — (, LP(fj)@] = k) 1 2} G — 1)
=0 J=
showing that ¢ is weakly absolutely continuous. Finally, it is clear that ¢
is adapted.

This concludes the proof. =

Remark. Ast — (m, (DE), t € R,, is absolutely continuous for arbitrary
M, £ € D @ E, there is a set of Lebesgue measure zero in R, outside which
it is differentiable (Hewitt and Stromberg, 1965), showing that ¢ is weakly
differentiable at almost every ¢t € R,.
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Notation. In connection with the proof of our main theorem below, we
employ the following notation.

l.Let T>0and m, § € D ® E be arbitrary, withn = u & e(a), § =
v ®e), a, B e LY(Ry), u, v € D.

We write L;([0, T)) for the closure in L*([0, T)) of the linear span of
the set {tr = (n, 8()E), t € [0, T): 0 e LX[0, T), )} of complex-valued
functlons on [0, 7). Then, L2([0, T)) is a Hilbert subspace of LX[0, T)).

2.For 6 e L*[0, T, sﬂ), we denote the function ¢ ~ {(n, 6()§), 1 € [0,
T), by 8(-)}(m, & and the multifunction [resp. the single-valued functions]
t = P, 00)(m, &) [resp. 1 = Py(t, 6(D)(m, §) and 1 — J\(#, 6(N)(M, §)] of
[0, T) into 2€ [resp. into C] by P(-, 8(:))(m, &) [resp. Py(*, 8(:))(m, & and
B, 8¢G)(m, &)1, In general, if p: [0, T) — sesq(D & E), we denote the
function # = p()(m, &), t € [0, T), by p(*)(n, &).

Remark. The following is our main result.

Theorem 5.6. Suppose that Problem (5.1)q is of hypermaximal monotone
type and the inequality of Proposition 5.4 holds. Then, (5.1) possesses a
unique adapted solution.

Proof. The issue of uniqueness is settled by Proposition 5.3, since if ¢,
and ¢, are two solutions of Problem (5.1), with the same initial condition,
Le., (0) = xo = @3(0), then

le® — @20lle =0

forallm, £ € D®E, r € R,, showing that ¢, = @,

Conceming the issue of existence, we shall show that the adapted map
¢ in Proposition 5.5 is a solution of Problem (5.1),.

Let A € (0, 1], I = [0, T), and ¢, be as in Proposition 5.5. As

Hlen® — e@llae = lo(® = Joplts 2Ol

= lloa® — Inap O 42
= )\kf)z,%'mi

forallm, £ e DQE, withm = u @ ela), E = v X eB), o, B €
L31c(Ry), u, v € D, it follows that the net {J,(*, ¢x())(m, &): A € (0, 11}
converges in C([0, T), s{) to the function {n, ¢(-)€) as A L 0, for all m, £
D &® E. Hence, the net {J,(-, @x(*\)(n, &: A e (0, 1]} converges in

L2([0, T)) to (m, @(-)€) as A 1 0. 2
Define the multifunction B: L2([0, T)) C L%([0, T)) — 2D py

BO(C)m, &) = P(, 8(NM, &, 8 e LX[0, T), )
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Then, P is monotone. This claim will be true if
Re({p(8(-)(m, &) — g(b(-Y(m, &), 8(:Y(m, &) — )M, Ei2gomy) = 0

whenever 8(-)(n, £), d()(n, &) € L2(10, 7)) and p(8(-)(n, £)) & P(O(-)(,
£), g(d()(M, £) € P(()(m, £)). Indeed, this is the case since

Re((p(8(-)(n, £)) ~ g(b(-)(m, &), B()(, &) — d()(M, E)i2o.1)

T
= Ref (p(B(s)(m, £)) — g(d(s)(m, ENXOB(s)(M, §) — d(s)(m, £))
0

T
= Rej dS <T]7 (paﬁ(s’ O(S)) - an(s’ 4)(5)))&)(”0, (e(S) - d)(s))g)
0

[because p(li(s))(m, &) € PU(s)(n, &) = P(s, ()M, &) is of
the form p(B(s))(m, £) = (M, Pap(s, W(s)E),
for some puga(s, U(s)) € Pugls, U(s)), s € R,]

T
= Re j ds {(Pap(s; 8()) — Gap(s, BE, MK, (8(s) — (s)E)
0

T
= f ds Re({((Pag(s, 0(5)) — qap(s, () ® 1)(E B M), D (8(s),
0

¢(S))>(2))
=0 [since P = P @ 1 is monotone]

Furthermore, P is maximal monotone. To see this, suppose that 8(-)(n,
&) e L2([0, 7)), p: [0, T) — sesq(D ® E) and

Re((p(")(m, £)) = g(d()(, £)), 8()(m, & — ()M, E)2o,ry) = 0
for all $(-)(m, &) e L3O, 7)) and g(¢(-)(n, &) € P(S()(n, £)). Then,

T
j ds Re({((P(s) = gop(s, $(5))) @ D(E @ M), Py 1(0(5), d())2)) = 0
o

for all &()(n, §) & L3I0, 1)) and g(b(-}(n, &) € P(d(-)(n, £)). Hence, as
P = P Q 1 is maximal monotone, we get p(s)(m, & € P(8(s)(n, £)), for
almost every s € [0, T), showing that P is maximal monotone.

Next, by Proposition 5.4, {P\(-, &x(:-))(m, £): A € (0, 1]} is a bounded
subset of ng([O T)). It follows that a subsequence (PG oM, E):n e
N} of this net converges weakly in L2([0, 7)) to some w(-)(n, §) as n >
with N, L 0. Also, as we have seen above, the net {J,(-, ¢,(: ), £x N e
(0, 1]} converges in L2([0, T)) to ¢(-)(m, £) as A 1 0. As P is maximal
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monotone, o(s)(1, £ € P(e(s)(n, £), or equivalently, o(s)(m, & e P(s,
e(s))(m, & for almost every s € [0, 7).
Finally, for arbitrary & e L2([0, 7)), we get

i

T
f dt (O, ¢, (D€ — (M, %)

0

T t d
j dr ¥(1) j ds;,—;«q, ¢, ()6

0 0

il

T t
-f dt 500 f ds Py (s, & (), &)

0 0

[since ¢,, is a solution of (5.1),,]

Hence, as A, 4 0, this gives

T T t
f dt e, o) — (n. xoE) = — f dt H() f ds w(s)m, £)

[ 0 0

As ¥ is arbitrary in L2¢([0, 7)), it follows that

M, (&) — (m, x8) = —J ds w(s)(m, £)

0

for all + e [0, T), whence

-2 (n, 9(08) = wldm, &) = P(, 9O, ©

forallm, £ € D @ E and almost every ¢ € R,, since T > 0 was arbitrary.
This concludes the proof. =

Remark. As examples, we show that a large class of quantum stochastic
differential inclusions which satisfy the assumptions and conclusion of Theo-
rem 5.6 arise as perturbations of certain quantum stochastic differential equa-
tions by some multivalued stochastic processes.

Let Vi s = 2% [resp. w;: R, X & = &, j = 1,2, 3, 4] be such that the
multivalued stochastic process [resp. stochastic processj ¢ = V(X(r)) [resp.
t = oft, X(®),j=1,2,3,4],r € Ry, isin Lo A)mys [resp. LE(s4)] for all
X e Li(sd).

Then, the quantum stochastic differential irnclusion

dX(n) e —(V(X(1)) dt + (1, X(1)) dA(1) + w,(t, X(2)) dAK1)
+ w31, X(1) dA; (1) + w41, X(2)) di), almost all ¢ e R, (*)
X(0) = x for some x, € A

is a perturbation by the multivalued stochastic process V of the quantum
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stochastic differential equation

de(t) = —(@(t, 2(9)) dAL(t) + wy(t, 2(0) dAK(r)

+ w32, 2(0) dA; (1) + o4, 2(D)) db), almostall ¢ e R,

20)=x, €

For o, B € LY1(R,), define the single-valued map
Pop: Ry X dA-d4

by

Pop(t, X) = Pap(Do(2, X) + va(Dwy(t, x) + ou(Hws(Z, X) + wylt, x)
(1, x) € R, X &, using previous notation, and the multifunction

P.g: R+X§Q—->25“

by
Pog(t, ) = V(X) + poplts 1), (5, 0) € R, X sl
Problem (x) is equivalent to the nonclassical differential inclusion
d%(n, X(€) € —P@t, X@)(m, §),  almostall ¢ e R, (*)p
X0)=x,ed
where

P(t, x)(M, §) = (n, Pugt, 08, (LR, X &

for arbitrary m, £ e D@ E withm = u Q e(a), £ = v ® e(B), o, B €

LR10(Ry), u, v € D.
There is now the following result.

Theorem 5.7. Suppose that the multifunction P in Problem (%), is such
that P = P ® 1 is in Hypmax(R, X s{), and there are a monotone increasing
function ¥: R, = R, and a collection {c,z: M, £ € D & E} of continuous
functions from R, — R, such that

"paB(t + 3, J)\,aB(tv x)) - paB(ts J)\,u[i(ts x))”’q&
= ng(t)s( "J)\,aﬁ(t’ x)"n,& + W("-’d'n,ﬁ))

where J, ,5(t, *), A > 0, is the resolvent of P, for all (£, x) € R, X A, s
e (0,1}, andn, £ e DR E, withm=u®e(a), E=vQeB), a, P e
L3 1Ry), u, v & D. Then, Problem (x) has a unique adapted solution.
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Proof. We only need to check that the inequality of Proposition 5.4 is
satisfied under the present assumptions. To this end, let 1, £ € D @ B, with
M=u®e),t=v®eP)a B e YR, u, v € D. Then,

Nhapt + 8, %) = Shoplt, Dl
= [Ny opt + 5, X) = Droplt + 5, x + Npop(t + 5, Jyap(t, X))
= Pap(t, Iraplt, DD ng
= Mipap(t + 5, Iap(ts X)) — Pap(ts Srap(t, DD e
= Nenes(| T ap(t, Ollne + Y(llx]ly0)

by the assumed inequality and since x = J, ,g(f, x) is Lipschitzian with
Lipschitz constant 1, for each + € R, A > 0, and arbitrary a, B €
L31(R,). As this is the inequality of Proposition 5.4, we are done. m
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